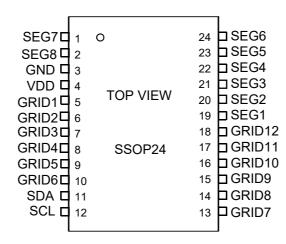


特点

- 工作电压 3.0-5.5V
- 内置 RC振荡器
- 8个SEG脚, 12个GRID脚 (显示位数可调1到12位)
- SEG脚只能接LED阳极, GRID脚只能接LED阴极
- I2C通讯接口
- 8级整体亮度可调 (SEG恒流设置8级)
- 内置显示RAM为8x12位
- 内置上电复位电路
- 输出恒流
- 驱动电流大,适合高亮显示场合
- 封装 SSOP24L(150mil) (8.65mm×3.90mm PP=0.635mm)

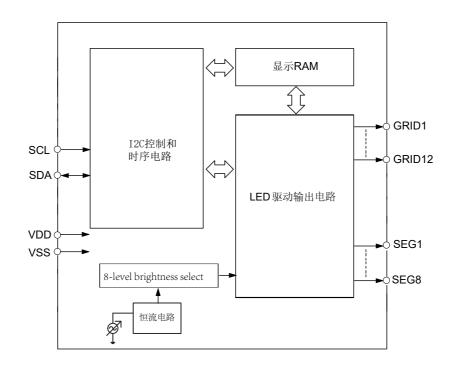
1 概述


VK16D32是一种恒流数码管或点阵LED驱动控制专用芯片,内部集成有数据锁存器、LED恒流驱动模块等电路。可以通过寄存器配置,调节扫描的位数,从而获得更大的单点驱动电流。数据通过I2C通讯接口与MCU通信。SEG脚接LED阳极,GRID脚接LED阴极,可支持8SEGx1GRID到8SEGx12GRID的点阵LED显示面板。采用SSOP24的封装形式,适用于小型LED显示屏驱动。

相较于传统的 LED 显示面板驱动芯片,当点亮的 LED 数量变化或者输入电压变化时,单颗 LED 电流会发生变化,从而会影响显示亮度;而采用了恒流设计,当显示模式配置好后,每颗 LED 的电流就恒定不变,不会因点亮的 LED 数量变化和输入电压变化而产生波动。

2 管脚定义

2.1 VK16D32 SSOP24管脚图


2.2 VK16D32 SSOP24管脚列表

脚位	管脚名称	输入/输出	功能描述	
19~24 1~2	SEG1~SEG8	输出	LED段输出	
3	GND	电源地	电源负	
4	VDD	电源正	电源正	
5~10 13~18	GRID1 ~GRID6 GRID7 ~GRID12	输出	LED位输出	
11	SDA	输入/输出	I2C串行数据输入/输出脚,需外接上拉电阻。	
12	SCL	输入	I2C串行时钟脚,需外接上拉电阻。	

3 功能说明

3.1 功能框图

3.2 显示RAM-存储结构

静态显示存储器(RAM)结构为8×12位,存储所显示的数据。RAM的内容直接映射成 LED 驱动器的显示内容,显示地址为0x00-0x0B,共12个显示单元。如果要打开/关闭某个LED,只需把对应的显示RAM位置1或者清0,例如控制SEG1脚和GRID1脚驱动的LED1亮灭,只需把的显示RAM(地址0x00)的bit0位置1或者清0。

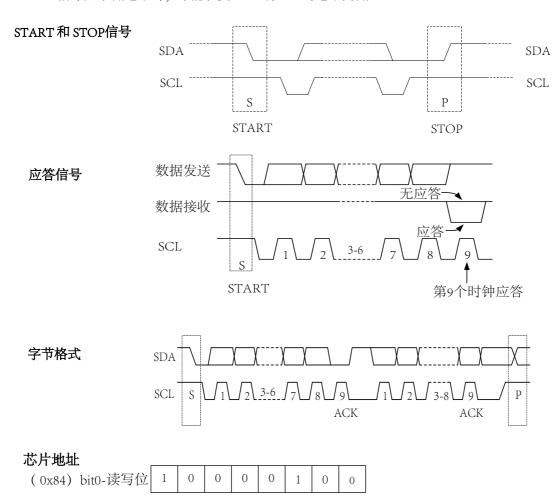
RAM中的内容映射至LED的过程如下表所示:

段 位	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	地址
GRID1								LEDI	0x00
GRID2									0x01
GRID3									0x02
GRID4									0x03
GRID5									0x04
GRID6									0x05
				:					
GRID9									0x09
GRID10									0x0A
GRID11									0x0B
	D7	D6	D5	D4	D3	D2	D1	D0	

说明:

芯片显示RAM在上电瞬间其内部保存的值可能是随机的,建议客户对显示RAM进行一次上电清零,即上电后向12位显存地址(0x00-0x0B)中全部写入数据0x00。

SEG脚只能接LED阳极, GRID脚只能接LED阴极, 不可反接。

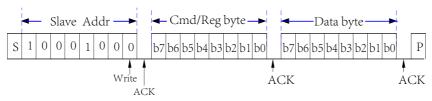

3.3 I2C通信命令

3.3.1 I2C通信接口

VK16D32有2个通信脚,遵循I2C协议,最大通信速度400kbit/S。 SCL脚是时钟输入脚,SDA脚是串行数据输入/输出脚,需外接上拉电阻。

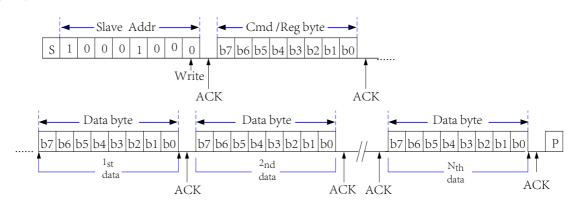
当 I2C 总线空闲时,这2个脚都为高电平。当 SCL 信号为高电平,SDA 信号由高电平转为低电平时开始工作或者重新开始工作,而 SCL 信号为高电平,SDA 信号由低电平转为高电平时停止工作。

当 SCL 信号处于高电平时, SDA 端口上的数据都是有效稳定的。只有当 SCL 信号处于低电平时,才能改变 SDA 端口上的电平高低。

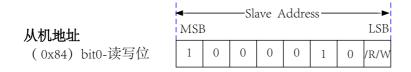

3.3.2 命令格式

写操作

写命令



写单个字节数据到显示RAM



说明:如果Slave地址后的字节是一个命令码,则命令码后的字节忽略。

写多个字节数据到显示RAM

3.3.3 命令说明

上电后需要将状态控制寄存器(0x12)配置成0x01(即芯片进入工作状态)。

寄存器写入顺序: 状态控制状态→显示数据寄存器→显示控制寄存器→状态控制寄存器。

注:一旦状态控制寄存器的 bit0配置成"0",重新写入数据时,一定要先将状态控制寄存器配置成 0x01 后再执行其他操作。

February 2020 Rev. 1.2 8/14

3.3.3.1 显示控制命令

选择显示亮度 (8级)。

寄存器				寄存器	器内容				功能说明			
地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	亮度等级 (SEG端持续输出电流)			
		•			0	1	1	1	35mA(默认)			
0.10		 无关项置0				1	1	0	30.6mA			
0x10						1	0	1	26.25mA			
		/6/八人五.0			/ G / C // <u>—</u> .0							
					0	0	0	1	8.75mA			
					0	0	0	0	4.37mA			

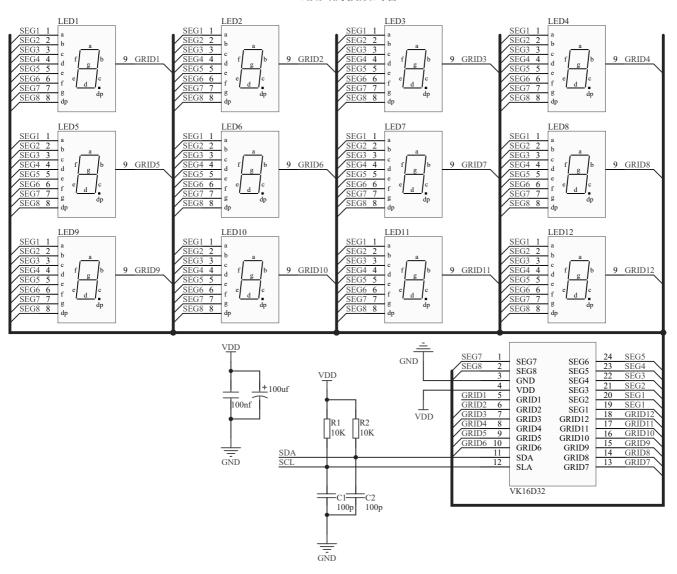
选择GRID位数,默认12位。

寄存 器		•	•	寄存器	器内容			功能说明	
地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	有效GRID扫描位数
		•			1	0	1	1	12位(默认)
					0	0	1	0	11位
0x11 无关项置0				0	0	0	1	10位	
		九人坝且0							
					0	0	0	0	1位

3.3.3.2 状态控制命令

寄存器			功能说明						
地址	bit7	bit6	工作状态						
		•			•	•		0	Shutdown(默认)
							1	正常工作	
0x12		Ŧ	 亡关项 [']	 置0		0		显示关(默认)	
				<u> </u>			1		显示开

3.3.3.3 显示数据命令


显示数据地址从 $0x00\sim0x0B$ 共 12 字节,分别与 SEG 和 GRID 管 脚所接矩阵的 LED 灯对应。

显示数据			功能说明						
数据 地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	显示的数据
0x00- 0x0F	X	X	X	X	X	X	X	X	每1bit对应1个SEG和1个GRID驱动的LED

4 参考电路

8段共阴极数码管

5 电气特性

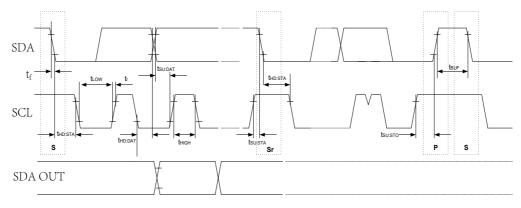
5.1 极限参数

特性	符号	极限值	単 位	
电源电压	VDD	-0.3~6.0	V	
输入电压	VIN	V_{SS} -0.5 \sim V_{DD} +0.5	V	
驱动输出电流	$I_{OLGRID}\Sigma^{1}_{16}$	+600	mA	
为区域为4的 III · 巴拉尼	I_{OHSEG}	-72	mA	
功率损耗	P_{D}	500	mW	
热阻	θ _{JA}	128	°C/W	
存贮温度	Tstg	-65~+150	°C	
工作温度	T _{OTG}	-40~+85	°C	

5.2 直流参数

参数	符号	测试条件	最小值	典型值	最大值	单位
亩 山 亚	T	Vo=V _{DD} -1V	-31.5	-35	-38.5	mA
高电平输出电流	$I_{ m OHSG}$	SEG1∼SEG8	-31.3	-33	-30.3	IIIA
低电平输入电流	I _{OLGOUT}	Vo=0.8V		560	_	mA
输入电流	In	VI=VDD, SDA, SCL	_		±1	uA
高电平输入电压	$V_{ m IH}$	SDA,SCL	$0.7V_{\mathrm{DD}}$		5	V
低电平输入电压	$V_{\rm IL}$	SDA,SCL	0		$0.3V_{DD}$	V
迟滞电压	V_{H}	SDA,SCL		0.35		V
动态电流损耗	I_{DD_DYN}	无负载, 关显示			1	mA
shutdown电流	I_{SHUT}	Shutdown使能			10	uA

5.3 交流参数

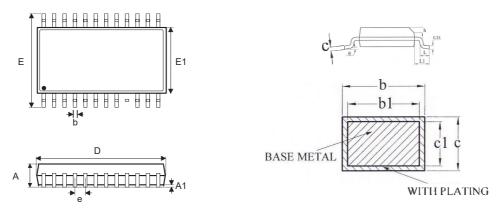

开关参数

参数	符号	测试条件	最小值	典型值	最大值	单位
上升时间	Ттхні	SEG1~8,CL=300pF	_		2	us
T-71 H31H3	Ttzh2	GRID1~12,CL=300pF	_	_	0.5	us
下降时间	Ттхн	CL=300pF, SEGn, GRIDn	_	_	120	us

时序参数

参数	符号	最小值	典型值	最大值	单位	测试条件
SCL时钟频率	F_{SCL}	-	-	400	KHz	
总线空闲时间	t _{BUF}	1.3	-	-	μS	在此时间内总线保持空闲直 到新的传输开始
Start 状态保持时间	thd: sta	0.6	-	-	μS	此周期后,产生第1个时钟脉冲
SCL 低电平时间宽	tlow	1.3	-	-	μS	
SCL 高电平时间宽	thigh	0.6	-	1	μS	
Start 状态设置时间	tsu:sta	0.6	-	-	μS	仅与重复的 START 信号有关
数据保持时间	thd:dat	-	-	0.9	nS	
数据设置时间	thd:dat	100	1	1	nS	
SDA 和 SCL 上升时间	$t_{\scriptscriptstyle R}$	20+0.1Cb ¹	1	-	nS	周期性采样测试结果
SDA 和 SCL 下降时间	$t_{\scriptscriptstyle{\mathrm{F}}}$	20+0.1Cb	-	-	nS	周期性采样测试结果
Stop 状态设置时间	tsu: sto	-	-	-	μS	

I²C 时序



February 2020 Rev. 1.2 12/14

6 封装信息

6.1 SSOP24L(150mil)(8.65mm \times 3.90mm PP=0.635mm)

SYMBOL	М	ILLIME	ΓER			
SYMBOL	MIN	NOM	MAX			
Λ	_	_	1.75			
Al	0.10	0.15	0 25			
ь	0 23	_	0.31			
b1	0.22	0.25	0.28			
С	0.20	_	0.24			
c1	0.19	0.20	0.21			
D	8.55	8.65	8.75			
Е	5.80	6.00	6 20			
E1	3.80	3.90	4 00			
е	C).635BSC	2			
h	0.30	_	0.50			
L	0.50	_	0.80			
L1	1.05REF					
θ	0	_	8°			

7 历史版本

No.	版本	日期	修订内容	检查
1	1.0	2018-08-10	原始版本	Yes
2	1.1	2019-07-11	参考电路	Yes
3	1.2	2020-02-11	修改内容	Yes

免责说明

本着为用户提供更好的服务的原则,永嘉微电在本手册中给用户提供准确详细的产品信息。但由于本手册中的内容具有一定的时效性,永嘉微电不保证该手册在任何时段的时效性和适用性。永嘉微电有权对本手册中的内容进行更新,恕不另行通知。为获取最新信息,请访问永嘉微电的官方网站(https://www.szvinka.com)或者与永嘉微电工作人员联系。