

特点

- 工作电压 3.0-5.5V
- 内置 RC振荡器
- 8个SEG脚, 16个GRID脚 (显示位数可调1到16位)
- SEG脚只能接LED阳极, GRID脚只能接LED阴极
- I2C通讯接口
- 16级整体亮度可调 (SEG恒流设置16级)
- 内置显示RAM为8x16位
- 内置上电复位电路
- 输出恒流
- 驱动电流大,适合高亮显示场合
- 封装 SOP28(300mil)(18.0mm x 7.5mm PP=1.27mm)

1 概述

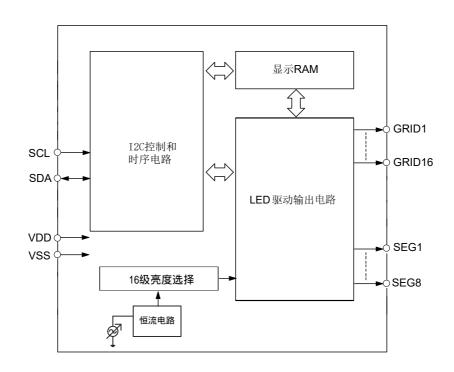
VK16D33是一种恒流数码管或点阵LED驱动控制专用芯片,内部集成有数据锁存器、LED恒流驱动模块等电路。可以通过寄存器配置,调节扫描的位数,从而获得更大的单点驱动电流。数据通过I2C通讯接口与MCU通信。SEG脚接LED阳极,GRID脚接LED阴极,可支持8SEGx1GRID到8SEGx16GRID的点阵LED显示面板。采用SOP28的封装形式,适用于小型LED显示屏驱动。

相较于传统的 LED 显示面板驱动芯片,当点亮的 LED 数量变化或者输入电压变化时,单颗 LED 电流会发生变化,从而会影响显示亮度;而采用了恒流设计,当显示模式配置好后,每颗 LED 的电流就恒定不变,不会因点亮的 LED 数量变化和输入电压变化而产生波动。

2 管脚定义

2.1 VK16D33 SOP28管脚图

SEG6 C SEG7 C SEG8 C GND C VDD C GRID1 C GRID2 C GRID4 C GRID5 C GRID6 C SDA C SCL C GRID7 C	1 2 3 4 5 6 7 8 9 10 11 12 13 14	O TOP VIEW SOP28	28 27 26 25 24 23 22 21 20 19 18 17 16	USEG5 USEG4 USEG3 USEG2 USEG1 UGRID16 UGRID15 UGRID13 UGRID11 UGRID11 UGRID10 UGRID10 UGRID9 UGRID8
GKIDIL	14		15	LGKIDO
				,


2.2 VK16D33 SOP28管脚列表

脚位	管脚名称	输入/输出	功能描述
24~28 1~3	SEG1~SEG8	输出	LED段输出
4	GND	电源地	电源负
5	VDD	电源正	电源正
6~11 14~23	GRID1 ~GRID6 GRID7 ~GRID16	输出	LED位输出
12	SDA	输入/输出	I2C串行数据输入/输出脚,需外接上拉电阻。
13	SCL	输入	I2C串行时钟脚,需外接上拉电阻。

3 功能说明

3.1 功能框图

3.2 显示RAM-存储结构

静态显示存储器(RAM)结构为8×16位,存储所显示的数据。RAM的内容直接映射成 LED 驱动器的显示内容,显示地址为0x00-0x0F,共16个显示单元。如果要打开/关闭某个LED,只需把对应的显示RAM位置1或者清0,例如控制SEG1脚和GRID1脚驱动的LED1亮灭,只需把的显示RAM(地址0x00)的bit0位置1或者清0。

RAM中的内容映射至LED的过程如下表所示:

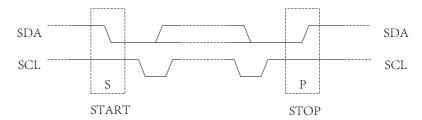
段 位	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	地址
GRID1								LEDI	0x00
GRID2									0x01
GRID3									0x02
GRID4									0x03
GRID5									0x04
GRID6									0x05
				:					:
GRID14									0x0D
GRID15									0x0E
GRID16									0x0F
	D7	D6	D5	D4	D3	D2	D1	D0	

说明:

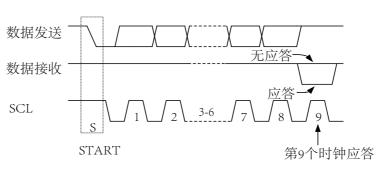
芯片显示RAM在上电瞬间其内部保存的值可能是随机的,建议客户对显示RAM进行一次上电清零,即上电后向16位显存地址(0x00-0x0F)中全部写入数据0x00。 SEG脚只能接LED阳极,GRID脚只能接LED阴极,不可反接。

3.3 I2C通信命令

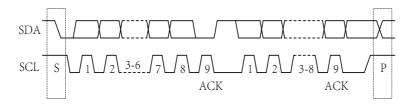
3.3.1 I2C通信接口


VK16D33有2个通信脚,遵循I2C协议,最大通信速度400kbit/S。

SCL脚是时钟输入脚, SDA脚是串行数据输入/输出脚, 需外接上拉电阻。


当 I2C 总线空闲时,这2个脚都为高电平。当 SCL 信号为高电平,SDA 信号由高电平转为低电平时开始工作或者重新开始工作,而 SCL 信号为高电平,SDA 信号由低电平转为高电平时停止工作。

当 SCL 信号处于高电平时, SDA 端口上的数据都是有效稳定的。只有当 SCL 信号处于低电平时,才能改变 SDA 端口上的电平高低。


START和 STOP信号

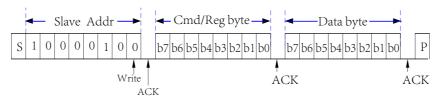
应答信号

字节格式

芯片地址

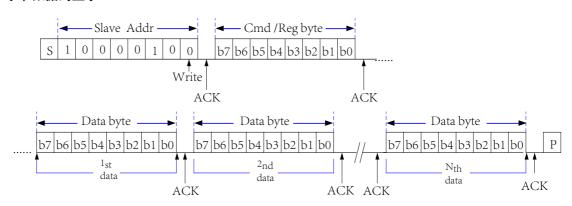
(0x84) bit0-读写位 1 0 0 0 0 1 0 0

VK16D33有两个地址可以使用。 当ADDR接VDD时,地址为0x86; 当ADDR地址接GND时,地址为0x84。(默认) 在SOP28封装形式中,ADDR管脚未封出。

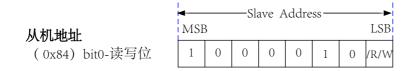

3.3.2 命令格式

写操作

写命令



写单个字节数据到显示RAM



说明:如果Slave地址后的字节是一个命令码,则命令码后的字节忽略。

写多个字节数据到显示RAM

3.3.3 命令说明

上电后需要将状态控制寄存器(0x12)配置成0x01(即芯片进入工作状态)。

寄存器写入顺序: 状态控制状态→显示数据寄存器→显示控制寄存器→状态控制寄存器。

注: 一旦状态控制寄存器的 bit0配置成"0",重新写入数据时,一定要先将状态控制寄存器配置成 0x01 后再执行其他操作。

3.3.3.1 显示控制命令

选择显示亮度 (16级)。

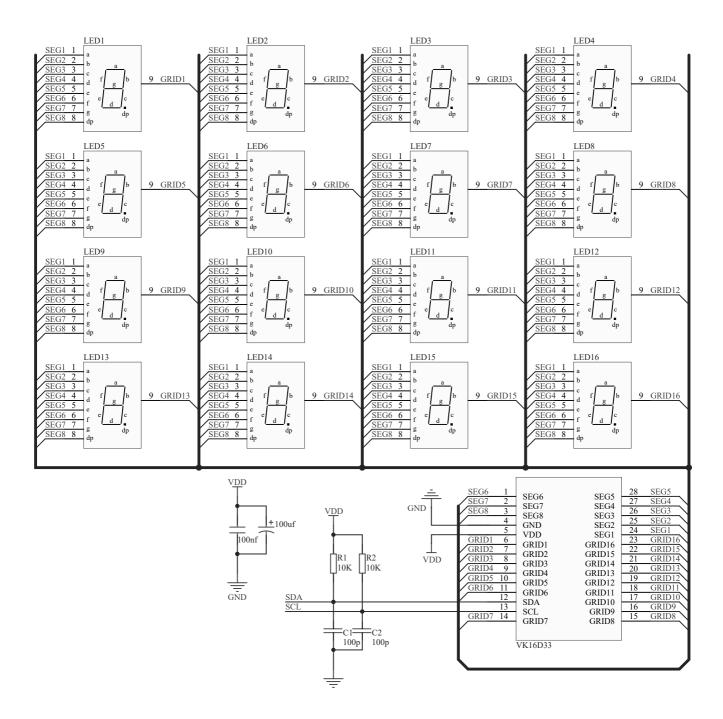
寄存器					功能说明				
地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	亮度等级 (SEG端持续输出电流)
						1	1	1	70mA(默认)
0.10					1	1	1	0	65.6mA
0x10	 无关项置0			1	1	0	1	61.3mA	
		九八火旦.0							
					0	0	0	1	8.75mA
					0	0	0	0	4.37mA

选择GRID位数,默认16位。

寄存器		•		功能说明									
地址	bit7 bit6 bit5			bit4	bit3	bit2	bit1	bit0	有效GRID扫描位数				
					1	1	1	1	16位(默认)				
		1			0	0	0	1	15位				
0x11	0x11				无关项置 ₀				0	0	1	0	14位
		70,70	X.E.U										
					0	0	0	0	1位				

3.3.3.2 状态控制命令

寄存器				寄存器	器内容				功能说明
地址	bit7	bit6	工作状态						
		•			•	•		0	Shutdown(默认)
							1	正常工作	
0x12		Ŧ	 亡关项 [']	 置0			0		显示关(默认)
				<u> </u>			1		显示开


3.3.3.3 显示数据命令

显示数据地址从 $0x00 \sim 0x0F$ 共 16 字节,分别与 SEG 和 GRID 管脚所接矩阵的 LED 灯对应。

显示数据			功能说明						
数据 地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	显示的数据
0x00- 0x0F	X	X	X	X	X	X	X	X	每1bit对应1个SEG和1个GRID驱动的LED

4 参考电路

5 电气特性

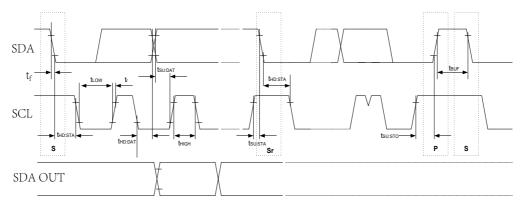
5.1 极限参数

特性	符号	极 限 值	单 位
电源电压	VDD	-0.3~6.0	V
输入电压	VIN	V _{SS} -0.5~V _{DD} +0.5	V
驱动输出电流	$I_{OLGRID}\Sigma^{1}_{16}$	+600	mA
30000111111111111111111111111111111111	I_{OHSEG}	-77	mA
功率损耗	P_{D}	1500	mW
存贮温度	Tstg	-65~+150	C
工作温度	T _{OTG}	-40~+85	°C

5.2 直流参数

参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输出电流	I_{OHSG}	Vo=V _{DD} -1V SEG1∼SEG8	-63	-70	-77	mA
低电平输入电流	I _{OLGOUT}	Vo=0.8V		560		mA
输入电流	In	VI=VDD, SDA, SCL	_	_	±1	uA
高电平输入电压	$V_{ m IH}$	SDA,SCL	$0.7V_{\mathrm{DD}}$	_	5	V
低电平输入电压	$ m V_{IL}$	SDA,SCL	0		$0.3V_{DD}$	V
迟滞电压	V_{H}	SDA,SCL		0.35		V
动态电流损耗	I_{DD_DYN}	无负载, 关显示		_	1	mA
shutdown电流	I_{SHUT}	Shutdown使能			10	uA

5.3 交流参数

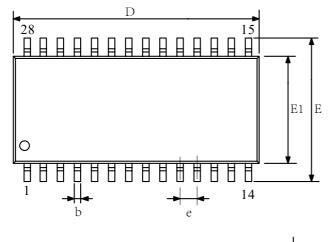

开关参数

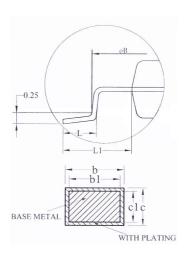
参数	符号	测试条件	最小值	典型值	最大值	单位
上升时间	Ттzн1	SEG1~8,CL=300pF	_		2	us
T-) h: h	Ttzh2	GRID1~16,CL=300pF	_	_	0.5	us
下降时间	Ттzн	CL=300pF, SEGn, GRIDn	_		120	us

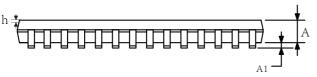
时序参数

参数	符号	最小值	典型值	最大值	单位	测试条件
SCL时钟频率	F_{SCL}	-	-	400	KHz	
总线空闲时间	t _{BUF}	1.3	-	-	μS	在此时间内总线保持空闲直 到新的传输开始
Start 状态保持时间	thd: sta	0.6	-	-	μS	此周期后,产生第1个时钟脉冲
SCL 低电平时间宽	tlow	1.3	-	1	μS	
SCL 高电平时间宽	t _{HIGH}	0.6	-	1	μS	
Start 状态设置时间	tsu:sta	0.6	-	-	μS	仅与重复的 START 信号有关
数据保持时间	t hd:dat	-	ı	0.9	nS	
数据设置时间	thd:dat	100	-	-	nS	
SDA 和 SCL 上升时间	$t_{\scriptscriptstyle R}$	20+0.1Cb ¹	-	-	nS	周期性采样测试结果
SDA 和 SCL 下降时间	$t_{\scriptscriptstyle{\mathrm{F}}}$	20+0.1Cb	-	-	nS	周期性采样测试结果
Stop 状态设置时间	tsu: sto	-	-	-	μS	

I²C 时序




February 2020 Rev. 1.2 12/14



6 封装信息

6.1 SOP28 (300mil) (18mm x 7.5mm PP=1.27mm)

SYMBOL	MI	LLIMETE	:R	
STIVIDUL	MIN	NOM	MAX	
Α			2.65	
A1	0.10		0.30	
b	0.39		0.47	
b1	0.38	0.41	0.44	
С	0.25		0.29	
c 1	0.24	0.25	0.26	
D	17.90	18.00	18.10	
E	10.10	10.30	10.50	
E1	7.40	7.50	7.60	
е		1.27BSC		
h	0.30		0.50	
L	0.70		1.00	
L1		1.40REF	_	

7 历史版本

No.	版本	日期	修订内容	检查
1	1.0	2018-08-10	原始版本	Yes
2	1.1	2019-07-11	参考电路	Yes
3	1.2	2020-02-11	修改内容	Yes

免责说明

本着为用户提供更好的服务的原则,永嘉微电在本手册中给用户提供准确详细的产品信息。但由于本手册中的内容具有一定的时效性,永嘉微电不保证该手册在任何时段的时效性和适用性。永嘉微电有权对本手册中的内容进行更新,恕不另行通知。为获取最新信息,请访问永嘉微电的官方网站(https://www.szvinka.com)或者与永嘉微电工作人员联系。