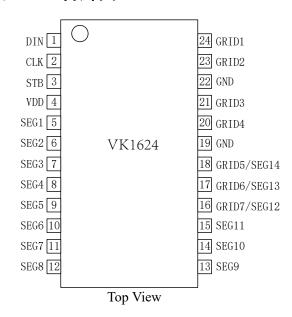


特点

- 工作电压 3.0-5.5V
- 内置 RC振荡器
- 11个SEG脚,4个GRID脚,3个可配置SEG/GRID复用脚
- SEG脚只能接LED阳极, GRID脚只能接LED阴极
- 3线串行接口
- 8级整体亮度可调
- 内置显示RAM为14x8位
- 内置上电复位电路
- 抗干扰能力强
- 封装

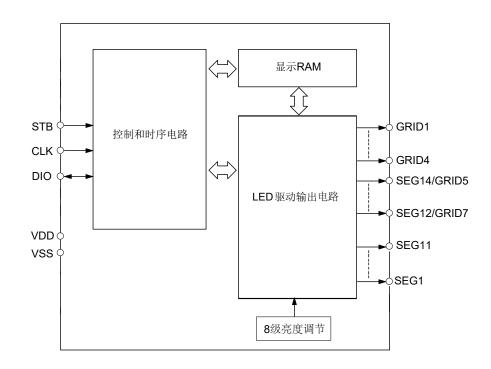
SOP24(300mil)(15.40mm x 7.50mm PP=1.27mm)...... DIP24 (250mil)(29.7mm x 6.4mm PP=2.54mm)


1 概述

VK1624是一种数码管或点阵LED驱动控制专用芯片,内部集成有3线串行接口、数据锁存器、LED驱动等电路。SEG脚接LED阳极,GRID脚接LED阴极,可支持14SEGx4GRID、13SEGx5GRID、12SEGx6GRID、11SEGx7GRID的点阵LED显示面板。适用于要求可靠、稳定和抗干扰能力强的产品。采用SOP24/DIP24的封装形式。

2 管脚定义

2.1 VK1624 SOP24/DIP24管脚图


2.2 VK1624 SOP24/DIP24管脚列表

脚位	管脚名称	输入/输出	功能描述				
1	DIN	输入	数据输入端口,在时钟上升沿输入串行数据,从低位开始。				
2	CLK	输入	时钟信号,在上升沿读串行数据到显示RAM,在下降沿输出数据。				
3	STB	输入	片选信号,高电平禁止,低电平使能。在下降沿输入的数据作为命令。				
4	VDD	电源正	电源正。				
5-15	SEG1-SEG11	输出	LED段输出(P管开漏)。				
16, 17 18	SEG12/GRID7- SEG14/GRID5	输出	LED段/位复用输出,通过软件配置为段输出或者位输出。				
20, 21 23, 24	GRID4- GRID1	输出	LED位输出(N管开漏)。				
19,22	GND	电源负	电源负。				

3 功能说明

3.1 功能框图

3.2 显示RAM-存储结构

静态显示存储器(RAM)结构为14×8位,存储所显示的数据。RAM的内容直接映射成LED 驱动器的显示内容,显示地址为0xC0-0xCD,共14个显示单元。如果要打开/关闭某个LED,只需把对应的显示RAM位置1或者清0,例如控制SEG1脚和GRID1脚驱动的LED1亮灭,只需把对应的显示RAM(地址0xC0)的bit0位置1或者清0。应用中没有使用的SEG脚对应的RAM位清0。

RAM中的内容映射至LED的过程如下表所示:

段 位	×	X	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	地址	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	地址	段 位
GRID1									0xC1								LEDI	0xC0	GRID1
GRID2									0xC3									0xC2	GRID2
GRID3									0xC5									0xC4	GRID3
GRID4									0xC7									0xC6	GRID4
GRID7									0xCD									0xCC	GRID7
	D7	D6	D5	D4	D3	D2	D1	D0		D7	D6	D5	D4	D3	D2	D1	D0		·

说明:

芯片显示RAM在上电瞬间其内部保存的值可能是随机的,建议客户对显示RAM进行一次上电清零,即上电后向14位显存地址(0xC0-0xCD)中全部写入数据0x00。

SEG脚只能接LED阳极, GRID脚只能接LED阴极, 不可反接。

3.3 串行通信命令

3.3.1 通信接口

VK1624有3个通信脚。

STB脚信号用来使能/禁止和主控制器之间的通信,STB高电平禁止并初始化内部时序,STB低电平使能,在STB下降沿后由DIN脚输入的第1个字节作为指令,如果在指令或数据传输时STB被置为高电平,那么串行通讯被初始化,并且正在传送的指令或数据无效。

CLK 脚为时钟输入脚,在上升沿读取串行数据,在下降沿输出数据。 DIN 脚为数据输入脚,在时钟上升沿输入串行数据,从低位开始。

3.3.2 命令格式

指令用来设置显示模式和LED驱动器的状态。

在STB下降沿后由DIN端口输入的第一个字节作为指令,经过译码,取最高bit7、bit6两位来区别不同的指令,如下表:

bit7	bit6	功能
0	0	显示模式设置命令
0	1	数据读写设置命令
1	0	显示控制命令
1	1	地址设置命令

3.3.3 命令说明

3.3.3.1 显示模式设置命令

设置选择LED显示的段和位的个数 (4~7位, 11~14段), 当该指令被执行时,显示被强制关闭,如果选择了相同的模式设置,命令不执行。上电时,默认显示模式为 11段7位。

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	显示模式
0	0					0	0	14段4位
0	0					0	1	13段5位
0	0					1	0	12段6位
0	0					1	1	11段7位

3.3.3.2 数据读写设置命令

该命令用来LED显示数据写和读以及相关的命令,bit1和bit0位不允许设置01或11。上电时,bit3-bit0数据为0.

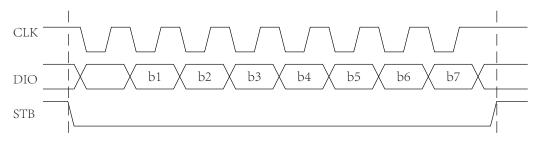
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	功能	说明
0	1					0	0	数据读写模式设置	写数据到显示寄存器
0	1				0			地址增加	地址自动增加
0	1		_		1			模式设置	固定地址
0	1			0				工作模式设置	普通模式
О	1			1				工下疾以以且	测试模式

3.3.3.3 地址设置命令

设置显示RAM的地址(0xC0-0xCD),上电时,地址默认设为C0H。

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	显示RAM地址
1	1			0	0	0	0	0xC0
1	1			0	0	0	1	0xC1
1	1			0	0	1	0	0xC2
1	1			0	0	1	1	0xC3
1	1			0	1	0	0	0xC4
1	1			0	1	0	1	0xC5
1	1	-		0	1	1	0	0xC6
1	1			0	1	1	1	0xC7
1	1			1	0	0	0	0xC8
1	1			1	0	0	1	0xC9
1	1			1	0	1	0	0xCA
1	1			1	0	1	1	0xCB
1	1			1	1	0	0	0xCC
1	1			1	1	0	1	0xCD

3.3.3.4 显示控制命令


设置显示的开关和选择显示亮度 (8级)。

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	功能	说明
1	0				0	0	0		设置脉宽为 1/16
1	0				0	0	1		设置脉宽为 2/16
1	0				0	1	0		设置脉宽为 4/16
1	0				0	1	1	设置脉宽	设置脉宽为 10/16
1	0		-		1	0	0	以且脉见	设置脉宽为 11/16
1	0				1	0	1		设置脉宽为 12/16
1	0				1	1	0		设置脉宽为 13/16
1	0				1	1	1		设置脉宽为 14/16
1	0			0				日二五子	显示关
1	0			1				显示开关	显示开

3.3.4 命令时序

写命令或显示数据

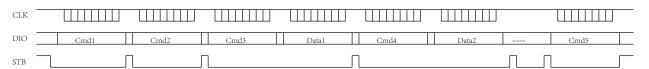
4 命令应用

4.1 送显示数据(地址自动加1)

使用地址自动加1模式传送显示数据,先设置要传送数据的起始地址(对应显示RAM地址)。起始地址命令字发送完后,STB不需要置高直接传送显示数据,最多14字节,数据传送完后STB置高。

Cmd1:显示模式设置命令-设置选择LED显示的段和位的个数(可以在初始化时设置)

Cmd2:数据读写设置命令-设置地址自动增加 (0x40)


Cmd3: 地址设置命令 -设置显示RAM起始地址 (0xC0-0xCD)

Data1-Datan: 送显示数据到Cmd3设置的起始地址和后面的显示RAM内(最多14个字节)

Cmd4: 显示控制命令 -显示开并设置显示亮度等级

4.2 送显示数据(固定地址)

使用固定地址模式传送显示数据,先设置要传送数据的地址(对应显示RAM地址),地址发送完后,STB不需要置高直接传送1字节显示数据,数据传送完后STB置高;再传送下1个显示数据的地址,STB不需要置高直接传送1字节显示数据,数据传送完后STB置高;…直到传送完最后1个字节显示数据,最多14字节。

Cmd1:显示模式设置命令-设置选择LED显示的段和位的个数 (可以在初始化时设置)

Cmd2:数据读写设置命令-设置固定地址模式(0x44)

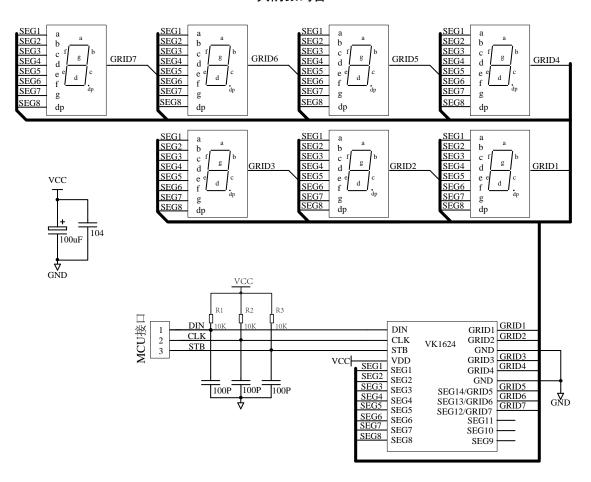
Cmd3: 地址设置命令 -设置显示RAM地址 (0xC0-0xCD)

Data1: 送显示数据到Cmd3设置的显示RAM地址

Cmd4: 地址设置命令 -设置显示RAM地址 (0xC0-0xCD)

Data2: 送显示数据到Cmd4设置的显示RAM地址

....最多传送14字节数据


Cmd5: 显示控制命令 -显示开并设置显示亮度等级

February 2020 Rev. 1.2 11/17

5 参考电路

共阴数码管

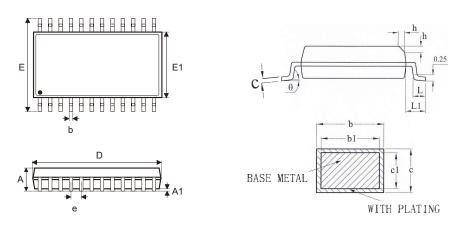
6 电气特性

6.1 极限参数

特性	符号	极限值	单位
电源电压	VDD	-0.3~7.0	V
输入电压	VIN	V _{SS} -0.5~V _{DD} +0.5	V
功率损耗	PD	400	mW
驱动输出电流	I_{OLGRID}	+250	mA
1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	I_{OHSEG}	-50	mA
存贮温度	Tstg	-50~+125	°C
工作温度	T_{OTG}	-40~+85	Ĉ

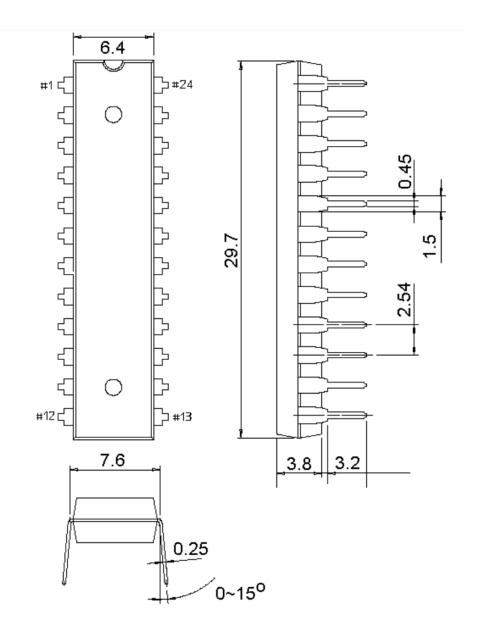
6.2 直流参数

名称	符号	最小值	典型值	最大值	単位		测试条件
石 柳			取入徂	半世	VDD	条件	
工作电压	VDD	3.0		5.5	٧		_
静态电流	I _{DD}		0.5	1.0	mA	5V	无负载/LED关闭
高电平输出电流	I _{OHSEG1}	-20	-25	-40	mΛ	<i>5</i> 1/	VO=VDD-2V SEG1- SEG11 SEG12/GRID7-SEG14/GRID5
同电干制山电机	I _{OHSEG2}	-25	-30 -50 mA		IIIA	5V	VO=VDD-3V SEG1- SEG11 SEG12/GR7-SEG14/GR5
低电平输入电流	I _{OLGRID}	100	140	_	mA	5V	VO=0.3V GRID1- GRID4 SEG14/GRID5-SEG12/GRID7
高电平输出电流容限	I _{TOLSEG}		_	5	%	VDD	VO=VDD-3V(VDD=5V) VO=VDD-2V(VDD=3V) SEG1 to SEG11 SEG12/GRID7 to SEG14/GRID5
输入低电压	V _{IL}	0	_	0.3	VDD	VDD	OTD OLK DIO
输入高电压	V _{IH}	0.7	_	1.0	עט י	VDD	STB, CLK, DIO
下拉电阻	R _L				kΩ	5V	_


6.3 交流参数

参数	符号	最小值	典型值	最大值	单位	测试条件
 	$t_{\scriptscriptstyle{\mathrm{PLZ}}}$	-	-	300	nS	$CLK \rightarrow DOUT$
	$t_{\scriptscriptstyle\mathrm{PZL}}$	-	1	100	nS	$CL = 15pF, RL = 10K \Omega$
上升时间	t _{zh} 1	-	-	2	μS	CL=300pF SEG1-SEG11
T-) HJ D	t _{TZH} 2	-	-	0.5	μS	CL=300pF GRID1-GRID4 SEG12/GRID7~SEG14/GRID5
下降时间	$t_{ ext{THZ}}$	-	1	1.5	μS	CL = 300pF SEGn,GRIDn
最大输入时钟频率	Fмах	-	-	1	MHz	占空比50%
输入电容	Cı	-	-	15	pF	-

7 封装信息


7.1 SOP24 (300mil) (15.40mm x 7.5mm PP=1.27mm)

SYMBOL	MI	LLIMETE	R				
STIVIDOL	MIN	NOM	MAX				
Α			2.64				
A1	0.10	0.20	0.30				
b	0.39		0.47				
b1	0.38	0.41	0.44				
С	0.25		0.29				
c1	0.24	0.25	0.26				
D	15.30	15.40	15.50				
E	10.10	10.30	10.50				
E1	7.40	7.50	7.60				
e		1.27BSC					
h	0.25 0.75						
L	0.70 1.00						
L1		1.40REF					

7.1 DIP24 (250mil)(29.7mm x 6.4mm PP=2.54mm)

8 历史版本

No.	版本	日期	修订内容	检查
1	1.0	2018-08-10	原始版本	Yes
2	1.1	2019-07-11	参考电路	Yes
3	1.2	2020-02-11	修改内容	Yes

免责说明

本着为用户提供更好的服务的原则,永嘉微电在本手册中给用户提供准确详细的产品信息。但由于本手册中的内容具有一定的时效性,永嘉微电不保证该手册在任何时段的时效性和适用性。永嘉微电有权对本手册中的内容进行更新,恕不另行通知。为获取最新信息,请访问永嘉微电的官方网站(https://www.szvinka.com)或者与永嘉微电工作人员联系。